3.3.97 \(\int \frac {1}{x^3 (1-2 x^4+x^8)} \, dx\) [297]

Optimal. Leaf size=32 \[ -\frac {3}{4 x^2}+\frac {1}{4 x^2 \left (1-x^4\right )}+\frac {3}{4} \tanh ^{-1}\left (x^2\right ) \]

[Out]

-3/4/x^2+1/4/x^2/(-x^4+1)+3/4*arctanh(x^2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 32, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.312, Rules used = {28, 281, 296, 331, 213} \begin {gather*} -\frac {3}{4 x^2}+\frac {3}{4} \tanh ^{-1}\left (x^2\right )+\frac {1}{4 x^2 \left (1-x^4\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(1 - 2*x^4 + x^8)),x]

[Out]

-3/(4*x^2) + 1/(4*x^2*(1 - x^4)) + (3*ArcTanh[x^2])/4

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{x^3 \left (1-2 x^4+x^8\right )} \, dx &=\int \frac {1}{x^3 \left (-1+x^4\right )^2} \, dx\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {1}{x^2 \left (-1+x^2\right )^2} \, dx,x,x^2\right )\\ &=\frac {1}{4 x^2 \left (1-x^4\right )}-\frac {3}{4} \text {Subst}\left (\int \frac {1}{x^2 \left (-1+x^2\right )} \, dx,x,x^2\right )\\ &=-\frac {3}{4 x^2}+\frac {1}{4 x^2 \left (1-x^4\right )}-\frac {3}{4} \text {Subst}\left (\int \frac {1}{-1+x^2} \, dx,x,x^2\right )\\ &=-\frac {3}{4 x^2}+\frac {1}{4 x^2 \left (1-x^4\right )}+\frac {3}{4} \tanh ^{-1}\left (x^2\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 41, normalized size = 1.28 \begin {gather*} \frac {1}{8} \left (\frac {4-6 x^4}{x^2 \left (-1+x^4\right )}-3 \log \left (1-x^2\right )+3 \log \left (1+x^2\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(1 - 2*x^4 + x^8)),x]

[Out]

((4 - 6*x^4)/(x^2*(-1 + x^4)) - 3*Log[1 - x^2] + 3*Log[1 + x^2])/8

________________________________________________________________________________________

Maple [A]
time = 0.03, size = 50, normalized size = 1.56

method result size
risch \(\frac {\frac {1}{2}-\frac {3 x^{4}}{4}}{x^{2} \left (x^{4}-1\right )}-\frac {3 \ln \left (x^{2}-1\right )}{8}+\frac {3 \ln \left (x^{2}+1\right )}{8}\) \(36\)
norman \(\frac {\frac {1}{2}-\frac {3 x^{4}}{4}}{x^{2} \left (x^{4}-1\right )}-\frac {3 \ln \left (-1+x \right )}{8}-\frac {3 \ln \left (1+x \right )}{8}+\frac {3 \ln \left (x^{2}+1\right )}{8}\) \(40\)
default \(-\frac {1}{16 \left (-1+x \right )}-\frac {3 \ln \left (-1+x \right )}{8}-\frac {1}{8 \left (x^{2}+1\right )}+\frac {3 \ln \left (x^{2}+1\right )}{8}-\frac {1}{2 x^{2}}+\frac {1}{16+16 x}-\frac {3 \ln \left (1+x \right )}{8}\) \(50\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(x^8-2*x^4+1),x,method=_RETURNVERBOSE)

[Out]

-1/16/(-1+x)-3/8*ln(-1+x)-1/8/(x^2+1)+3/8*ln(x^2+1)-1/2/x^2+1/16/(1+x)-3/8*ln(1+x)

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 37, normalized size = 1.16 \begin {gather*} -\frac {3 \, x^{4} - 2}{4 \, {\left (x^{6} - x^{2}\right )}} + \frac {3}{8} \, \log \left (x^{2} + 1\right ) - \frac {3}{8} \, \log \left (x^{2} - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^8-2*x^4+1),x, algorithm="maxima")

[Out]

-1/4*(3*x^4 - 2)/(x^6 - x^2) + 3/8*log(x^2 + 1) - 3/8*log(x^2 - 1)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 54 vs. \(2 (24) = 48\).
time = 0.34, size = 54, normalized size = 1.69 \begin {gather*} -\frac {6 \, x^{4} - 3 \, {\left (x^{6} - x^{2}\right )} \log \left (x^{2} + 1\right ) + 3 \, {\left (x^{6} - x^{2}\right )} \log \left (x^{2} - 1\right ) - 4}{8 \, {\left (x^{6} - x^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^8-2*x^4+1),x, algorithm="fricas")

[Out]

-1/8*(6*x^4 - 3*(x^6 - x^2)*log(x^2 + 1) + 3*(x^6 - x^2)*log(x^2 - 1) - 4)/(x^6 - x^2)

________________________________________________________________________________________

Sympy [A]
time = 0.05, size = 36, normalized size = 1.12 \begin {gather*} \frac {2 - 3 x^{4}}{4 x^{6} - 4 x^{2}} - \frac {3 \log {\left (x^{2} - 1 \right )}}{8} + \frac {3 \log {\left (x^{2} + 1 \right )}}{8} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(x**8-2*x**4+1),x)

[Out]

(2 - 3*x**4)/(4*x**6 - 4*x**2) - 3*log(x**2 - 1)/8 + 3*log(x**2 + 1)/8

________________________________________________________________________________________

Giac [A]
time = 5.85, size = 38, normalized size = 1.19 \begin {gather*} -\frac {3 \, x^{4} - 2}{4 \, {\left (x^{6} - x^{2}\right )}} + \frac {3}{8} \, \log \left (x^{2} + 1\right ) - \frac {3}{8} \, \log \left ({\left | x^{2} - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(x^8-2*x^4+1),x, algorithm="giac")

[Out]

-1/4*(3*x^4 - 2)/(x^6 - x^2) + 3/8*log(x^2 + 1) - 3/8*log(abs(x^2 - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.04, size = 26, normalized size = 0.81 \begin {gather*} \frac {3\,\mathrm {atanh}\left (x^2\right )}{4}+\frac {\frac {3\,x^4}{4}-\frac {1}{2}}{x^2-x^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(x^8 - 2*x^4 + 1)),x)

[Out]

(3*atanh(x^2))/4 + ((3*x^4)/4 - 1/2)/(x^2 - x^6)

________________________________________________________________________________________